题目
已知函数\( f(x) = x^2 – 2a\ln x + 1 \),\( a \in R \)。
(1)当\( a = -1 \)时,设曲线\( y = f(x) \)在\( x = 1 \)处的切线为\( l \),求\( l \)与曲线\( y = f(x) \)的公共点个数;
(2)当\( a > 0 \)时,若\( \forall x_1, x_2 \in [1, e] \),\( |f(x_1) – f(x_2)| < e^2 + 1 \)恒成立,求实数\( a \)的取值范围。
答案
解: (1)当\( a = -1 \)时,\( f(x) = x^2 + 2\ln x + 1 \),
则\( f'(x) = 2x + \displaystyle \frac{2}{x} \),所以\( f'(1) = 4 \),
又\( f(1) = 2 \),所以曲线\( y = f(x) \)在\( x = 1 \)处的切线方程为\( y = 4(x – 1) + 2 \),即\( y = 4x – 2 \),
联立方程\( \begin{cases} y = 4x – 2 \\ y = x^2 + 2\ln x + 1 \end{cases} \),可得\( x^2 + 2\ln x – 4x + 3 = 0 \),
令\( g(x) = x^2 + 2\ln x – 4x + 3, x > 0 \),
则\( g'(x) = 2x + \displaystyle \frac{2}{x} – 4 \geq 0 \),
所以\( g(x) \)在\( (0, +\infty) \)上单调递增.
又因为\( g(1) = 0 \),所以\( g(x) = 0 \)有且仅有1解,
所以直线\( l \)与曲线\( y = f(x) \)公共点个数为1;
(2)\( \forall x_1, x_2 \in [1, e], |f(x_1) – f(x_2)| < e^2 + 1 \)恒成立,
等价于\( f(x)_{\max} – f(x)_{\min} < e^2 + 1 \),
由\( f(x) = x^2 – 2a\ln x + 1 \),得\( f'(x) = 2x – \displaystyle \frac{2a}{x} = \displaystyle \frac{2(x^2 – a)}{x}, a > 0, x > 0 \),
当\( x \in (0, \sqrt{a}) \)时,\( f'(x) < 0 \),所以\( f(x) \)在\( (0, \sqrt{a}) \)上单调递减;
当\( x \in (\sqrt{a}, +\infty) \)时,\( f'(x) > 0 \),所以\( f(x) \)在\( (\sqrt{a}, +\infty) \)上单调递增,
①当\( \sqrt{a} \leq 1 \),即\( 0 < a \leq 1 \)时,\( f(x) \)在\( [1, e] \)上单调递增.
所以\( f(x)_{\min} = f(1) = 2, f(x)_{\max} = f(e) = e^2 – 2a + 1 \),此时\( e^2 – 2a + 1 – 2 = e^2 – 2a – 1 < e^2 + 1 \),所以\( 0 < a \leq 1 \)满足条件;
②当\( \sqrt{a} \geq e \),即\( a \geq e^2 \)时,\( f(x) \)在\( [1, e] \)上单调递减, 所以\( f(x)_{\max} = f(1) = 2, f(x)_{\min} = f(e) = e^2 – 2a + 1 \), 此时\( 2 – e^2 + 2a – 1 = 2a – e^2 + 1 \geq e^2 + 1 \),
不合题意,
③当\( 1 < \sqrt{a} < e \),即\( 1 < a < e^2 \)时,\( f(x) \)在\( (1, \sqrt{a}) \)上单调递减,在\( (\sqrt{a}, e) \)上单调递增,
所以\( f(x)_{\min} = f(\sqrt{a}) = a – a\ln a + 1, f(x)_{\max} = \max\{f(1), f(e)\} \),
所以\( 2 – (a – a\ln a + 1) < e^2 + 1 \),且\( (e^2 - 2a + 1) - (a - a\ln a + 1) < e^2 + 1 \),即\( a\ln a - a - e^2 < 0 \),且\( a\ln a - 3a - 1 < 0 \),
令\( m(a) = a\ln a – a – e^2 \),当\( 1 < a < e^2 \)时,\( m'(a) = \ln a > 0 \),所以\( m(a) \)在\( (1, e^2) \)上单调递增,所以\( m(a) < m(e^2) = 0 \),
令\( t(a) = a\ln a – 3a – 1 \),当\( 1 < a < e^2 \)时,\( t'(a) = \ln a - 2 < 0 \), 所以\( t(a) \)在\( (1, e^2) \)上单调递减,所以\( t(a) < t(1) = -4 < 0 \),
所以当\( 1 < a < e^2 \)时,满足题意.
综上, \( a \)的取值范围为\( a \in (0, e^2) \)。
题目
已知\( f(x) = \sin x + a\cos x \),\( x = \pi \)是函数\( g(x) = f'(x) \)的极小值点。
(1)求实数\( a \)的值;
(2)讨论函数\( f(x) \)在区间\((-2\pi, 2\pi)\)内的零点个数。
方法一、答案解析
(1)\( g(x) = f'(x) = (1 – a)\sin x + x\cos x \)
\( g'(x) = (2 – a)\cos x – x\sin x \)
因为\( x = \pi \)是\( g(x) \)的极小值点,
所以\( g'(\pi) = 0 \),所以\( a = 2 \)
此时,\( g'(x) = -x\sin x \)
经验证,\( x = \pi \)是\( g(x) \)的极小值点。
所以\( a = 2 \)
(2)\( f(x) = x\sin x + 2\cos x \),\( x \in (-2\pi, 2\pi) \)
因为\( f(-x) = f(x) \),所以\( f(x) \)为偶函数
先考虑\( x \in [0, 2\pi) \)
当\( x = \displaystyle\frac{\pi}{2} \)或\( x = \displaystyle\frac{3\pi}{2} \)时,\( f(x) \neq 0 \)。
当\( x \neq \displaystyle\frac{\pi}{2} \)且\( x \neq \displaystyle\frac{3\pi}{2} \)时,
令\( f(x) = x\sin x + 2\cos x = 0 \)
所以\( \tan x = -\displaystyle\frac{2}{x} \),由图象可知有2个交点,
所以\( x \in (0, 2\pi) \)时\( f(x) \)有2个零点,
因为\( f(x) \)为偶函数,所以\( x \in (-2\pi, 0) \)时,\( f(x) \)有2个零点
所以\( f(x) \)共有4个零点。